Alfa Romeo 155 20 TS 16V

For copyright infringement and removal of materials -

Keywords: alfa romeo ignition coil, alfa, romeo, alfa, 155, 2.0, 16v, ts, ar67203, ignition, coil, 96-98

Description: Alfa Romeo Alfa 155 2.0 16V TS AR67203 Ignition Coil 96-98

By buying this product you can collect up to 59 loyalty points. Your cart will total 59 points that can be converted into a voucher of R 5.90.

This is a brand new, affordable OE Specification aftermarket replacement product. 100% Factory tested and built to strict quality control standard to ensure high performance and guaranteed to deliver better fuel economy.

The ignition coil  is a crucial part of your ignition system. Its function is to convert the 12 volt power of your vehicle's electrical system in to 35,000 or more volts. This produces a high intensity spark at the spark plug which then ignites the fuel in the cylinder. Coils in general will wear out over time. This will cause a misfire condition.

An ignition coil that is completely dead will prevent the engine from starting or will stop the engine if the car is running at the time of failure. This is because no current will reach the spark plugs. An ignition coil that is failing will still provide current to the plugs, but it might not be enough for a full spark and the car will run sluggishly. If the current being provided by the coil isn't consistent, the car will run rough. If a coils starts to show wear from the symptoms, the other coil are sure to follow. Coils, over time, lose their ability to produce the correct power to send to the spark plugs, hence a poor spark from your spark plugs thus increasing fuel consumption.

This item has been tested by the manufacturer. Due to the nature of this part, this manufacturer does not accept returns

The coil is a simple device -- essentially a high-voltage transformer made up of two coils of wire. One coil of wire is called the primary coil. Wrapped around it is the secondary coil. The secondary coil normally has hundreds of times more turns of wire than the primary coil.

The primary coil's current can be suddenly disrupted by the breaker points. or by a solid-state device in an electronic ignition.

An ignition coil consists of a laminated iron core surrounded by two coils of copper wire. Unlike a power transformer, an ignition coil has an open magnetic circuit - the iron core does not form a closed loop around the windings. The energy that is stored in the magnetic field of the core is the energy that is transferred to the spark plug.

The primary winding has relatively few turns of heavy wire. The secondary winding consists of thousands of turns of smaller wire, insulated for the high voltage by enamel on the wires and layers of oiled paper insulation. The coil is usually inserted into a metal can or plastic case with insulated terminals for the high voltage and low voltage connections. When the contact breaker closes, it allows a current from the battery to build up in the primary winding of the ignition coil. The current does not flow instantly because of the inductance of the coil. Current flowing in the coil produces a magnetic field in the core and in the air surrounding the core. The current must flow long enough to store enough energy in the field for the spark. Once the current has built up to its full level, the contact breaker opens. Since it has a capacitor connected across it, the primary winding and the capacitor form a tuned circuit, and as the stored energy oscillates between the inductor formed by the coil and the capacitor, the changing magnetic field in the core of the coil induces a much larger voltage in the secondary of the coil. More modern electronic ignition systems operate on exactly the same principle, but some rely on charging the capacitor to around 400 volts rather than charging the inductance of the coil. The timing of the opening of the contacts (or switching of the transistor) must be matched to the position of the piston in the cylinder. The spark must occur after the air/fuel mixture is compressed. The contacts are driven off a shaft that is driven by the engine crankshaft, or, if electronic ignition is used, a sensor on the engine shaft controls the timing of the pulses.

The amount of energy in the spark required to ignite the air-fuel mixture varies depending on the pressure and composition of the mixture, and on the speed of the engine. Under laboratory conditions as little as 1 millijoule is required in each spark, but practical coils must deliver much more energy than this to allow for higher pressure, rich or lean mixtures, losses in ignition wiring, and plug fouling and leakage. When gas velocity is high in the spark gap, the arc between the terminals is blown away from the terminals, making the arc longer and requiring more energy in each spark. Between 30 and 70 millijoules are delivered in each spark.

Photogallery Alfa Romeo 155 20 TS 16V:

Alfa Romeo Twin Spark engine - Wikipedia, the free encyclopedia
Alfa Romeo 155 V6 Ti DTM - ForoCoches
ALFA ROMEO 155 - 1992, 1993, 1994, 1995, 1996, 1997, 1998 ...

Maranello House
ALFA ROMEO 155 - 1992, 1993, 1994, 1995, 1996, 1997, 1998 ...
Liarla con un 155 1.7 TS? [Archivo] - Alfa Corse Club

Alfa Romeo 155 – Wikipedia, wolna encyklopedia
Alfa Romeo Twin Spark engine - Wikipedia, the free encyclopedia
Alfa Romeo 155 2.0 TS 16v Super

Women & Alfas - Page 153 - Alfa Romeo Bulletin Board & Forums
Alfa Romeo 155: Un'auto da sempre snobbata e criticata che ora ...
Klub Alfa Romeo Pomorze :: Zobacz temat - [artykuł] TWIN SPARK

Alfa Romeo 155 2,0 TS 16V Super - Brugt bil til salg på BilBasen ...
20 vt into a 145 - BerlinaSportivo :: Italian Sports Saloons
Alfa Romeo 155 2,0 TS 16V Super - Brugt bil til salg på BilBasen ...

GT ☻ - Alfa Amore: Online Alfa Romeo community
Alfa Romeo GTV and Spider - Wikipedia, the free encyclopedia
Alfa Romeo 155 2,0 TS 16V Super - Brugt bil til salg på BilBasen ...